Rationally designed conductive hierarchical nanostructures are highly desirable for supporting pseudocapacitive materials to achieve high-performance electrodes for supercapacitors. Herein, manganese molybdate nanosheets were hydrothermally grown with graphene oxide (GO) on… Click to show full abstract
Rationally designed conductive hierarchical nanostructures are highly desirable for supporting pseudocapacitive materials to achieve high-performance electrodes for supercapacitors. Herein, manganese molybdate nanosheets were hydrothermally grown with graphene oxide (GO) on three-dimensional nickel foam-supported carbon nanotube structures. Under the optimal graphene oxide concentration, the obtained carbon nanotubes/reduced graphene oxide/MnMoO4 composites (CNT/rGO/MnMoO4) as binder-free supercapacitor cathodes perform with a high specific capacitance of 2374.9 F g-1 at the scan rate of 2 mV s-1 and good long-term stability (97.1% of the initial specific capacitance can be maintained after 3000 charge/discharge cycles). The asymmetric device with CNT/rGO/MnMoO4 as the cathode electrode and the carbon nanotubes/activated carbon on nickel foam (CNT-AC) as the anode electrode can deliver an energy density of 59.4 Wh kg-1 at the power density of 1367.9 W kg-1. These superior performances can be attributed to the synergistic effects from each component of the composite electrodes: highly pseudocapacitive MnMoO4 nanosheets and three-dimensional conductive Ni foam/CNTs/rGO networks. These results suggest that the fabricated asymmetric supercapacitor can be a promising candidate for energy storage devices.
               
Click one of the above tabs to view related content.