LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Diketopyrrolopyrrole-Based Photosensitizers Conjugated with Chemotherapeutic Agents for Multimodal Tumor Therapy.

Photo by joshuafernandez from unsplash

For synergistic cancer therapy, it is highly desirable to devise a single multifunctional agent to combine photodynamic therapy (PDT), photothermal therapy (PTT), and chemotherapy, which is soluble and excitable at… Click to show full abstract

For synergistic cancer therapy, it is highly desirable to devise a single multifunctional agent to combine photodynamic therapy (PDT), photothermal therapy (PTT), and chemotherapy, which is soluble and excitable at low irradiation, as well as able to selectively target tumors and achieve high efficacy. Toward this ambition, here the chemotherapy drugs chlorambucil (Cb), and all trans retinoic acid (ATRA) are covalently conjugated onto a small dye molecule diketopyrrolopyrrole (DPP-Cb and DPP-ATRA). The soluble nanoparticles (NPs) of DPP-Cb and DPP-ATRA formed by reprecipitation can selectively accumulate in tumors, release chemotherapy drugs under acidic conditions, and exhibit efficient reactive oxygen species (ROS) generation and photothermal conversion under the irradiation of a low power xenon lamp (40 mW/cm2). We show in vitro and in vivo that both NPs can effectively kill cancer cells and suppress cancer growth at a low dose (0.4 mg/kg).

Keywords: diketopyrrolopyrrole based; chemotherapeutic agents; conjugated chemotherapeutic; therapy; based photosensitizers; photosensitizers conjugated

Journal Title: ACS applied materials & interfaces
Year Published: 2017

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.