LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Simulations of a Graphene Nanoflake as a Nanovector To Improve ZnPc Phototherapy Toxicity: From Vacuum to Cell Membrane.

Photo by nci from unsplash

We propose a new approach to improving photodynamic therapy (PDT) by transporting zinc phthalocyanine (ZnPc) in biological systems via a graphene nanoflake, to increase its targeting. Indeed, by means of… Click to show full abstract

We propose a new approach to improving photodynamic therapy (PDT) by transporting zinc phthalocyanine (ZnPc) in biological systems via a graphene nanoflake, to increase its targeting. Indeed, by means of time-dependent density functional theory simulations, we show that the ZnPc molecule in interaction with a graphene nanoflake preserves its optical properties not only in a vacuum but also in water. Moreover, molecular dynamic simulations demonstrate that the graphene nanoflake/ZnPc association, as a carrier, permits one to stabilize the ZnPc/graphene nanoflake system on the cellular membrane, which was not possible when using ZnPc alone. We finally conclude that the graphene nanoflake is a good candidate to transport and stabilize the ZnPc molecule near the cell membrane for a longer time than the isolated ZnPc molecule. In this way, the choice of the graphene nanoflake as a nanovector paves the way to ZnPc PDT improvement.

Keywords: cell membrane; nanoflake nanovector; znpc; graphene nanoflake; vacuum

Journal Title: ACS applied materials & interfaces
Year Published: 2017

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.