LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Cobalt Nanoparticles Encapsulated in Porous Carbons Derived from Core-Shell ZIF67@ZIF8 as Efficient Electrocatalysts for Oxygen Evolution Reaction.

Photo by javardh from unsplash

The synthesis of electrocatalysts consisting of selectively functionalized parts is an effective strategy to prepare nonprecious electrocatalysts with excellent performance for oxygen evolution reaction (OER). Herein, we synthesized core-shell structured… Click to show full abstract

The synthesis of electrocatalysts consisting of selectively functionalized parts is an effective strategy to prepare nonprecious electrocatalysts with excellent performance for oxygen evolution reaction (OER). Herein, we synthesized core-shell structured ZIF67@ZIF8 and converted it into Co decorated porous carbons (CS-Co/Cs) consisting of the ZIF67 derived uniformly dispersed Co nanoparticles encapsulated in graphitic carbon as cores and the ZIF8 derived porous carbon as shells. Compared to individual ZIF67 derived samples (Co/Cs), the unique structure of CS-Co/Cs leads to the larger surface area and more hydrophilic surface, both of which facilitate the mass transfer, contributing to the enhanced OER performance. The optimized CS-Co/C sample presents the low overpotential of 290 mV to deliver 10 mA cm-2 toward OER in 1 M KOH, which is among the best of the reported nonprecious OER electrocatalysts. The CS-Co/C exhibits no obvious current attenuation at 1.53 V for 30 000 s, demonstrating its robust stability.

Keywords: core shell; oxygen evolution; zif67; porous carbons; evolution reaction; zif67 zif8

Journal Title: ACS applied materials & interfaces
Year Published: 2017

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.