The synthesis of electrocatalysts consisting of selectively functionalized parts is an effective strategy to prepare nonprecious electrocatalysts with excellent performance for oxygen evolution reaction (OER). Herein, we synthesized core-shell structured… Click to show full abstract
The synthesis of electrocatalysts consisting of selectively functionalized parts is an effective strategy to prepare nonprecious electrocatalysts with excellent performance for oxygen evolution reaction (OER). Herein, we synthesized core-shell structured ZIF67@ZIF8 and converted it into Co decorated porous carbons (CS-Co/Cs) consisting of the ZIF67 derived uniformly dispersed Co nanoparticles encapsulated in graphitic carbon as cores and the ZIF8 derived porous carbon as shells. Compared to individual ZIF67 derived samples (Co/Cs), the unique structure of CS-Co/Cs leads to the larger surface area and more hydrophilic surface, both of which facilitate the mass transfer, contributing to the enhanced OER performance. The optimized CS-Co/C sample presents the low overpotential of 290 mV to deliver 10 mA cm-2 toward OER in 1 M KOH, which is among the best of the reported nonprecious OER electrocatalysts. The CS-Co/C exhibits no obvious current attenuation at 1.53 V for 30 000 s, demonstrating its robust stability.
               
Click one of the above tabs to view related content.