LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Rayleigh Instability-Assisted Satellite Droplets Elimination in Inkjet Printing.

Photo from wikipedia

Elimination of satellite droplets in inkjet printing has long been desired for high-resolution and precision printing of functional materials and tissues. Generally, the strategy to suppress satellite droplets is to… Click to show full abstract

Elimination of satellite droplets in inkjet printing has long been desired for high-resolution and precision printing of functional materials and tissues. Generally, the strategy to suppress satellite droplets is to control ink properties, such as viscosity or surface tension, to assist ink filaments in retracting into one drop. However, this strategy brings new restrictions to the ink, such as ink viscosity, surface tension, and concentration. Here, we report an alternative strategy that the satellite droplets are eliminated by enhancing Rayleigh instability of filament at the break point to accelerate pinch-off of the droplet from the nozzle. A superhydrophobic and ultralow adhesive nozzle with cone morphology exhibits the capability to eliminate satellite droplets by cutting the ink filament at breakup point effectively. As a result, the nozzles with different sizes (10-80 μm) are able to print more inks (1 < Z < 38), for which the nozzles are super-ink-phobic and ultralow adhesive, without satellite droplets. The finding presents a new way to remove satellite droplets via designing nozzles with super-ink-phobicity and ultralow adhesion rather than restricting the ink, which has promising applications in printing electronics and biotechnologies.

Keywords: rayleigh instability; ink; instability assisted; satellite droplets; inkjet printing

Journal Title: ACS applied materials & interfaces
Year Published: 2017

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.