LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Spinel/Layered Heterostructured Lithium-Rich Oxide Nanowires as Cathode Material for High-Energy Lithium-Ion Batteries.

Photo from wikipedia

Lithium-rich oxide material has been considered as an attractive candidate for high-energy cathode for lithium-ion batteries (LIBs). However, the practical applications are still hindered due to its low initial reversible… Click to show full abstract

Lithium-rich oxide material has been considered as an attractive candidate for high-energy cathode for lithium-ion batteries (LIBs). However, the practical applications are still hindered due to its low initial reversible capacity, severe voltage decaying, and unsatisfactory rate capability. Among all, the voltage decaying is a serious barrier that results in a large decrease of energy density during long-term cycling. To overcome these issues, herein, an efficient strategy of fabricating lithium-rich oxide nanowires with spinel/layered heterostructure is proposed. Structural characterizations verify that the spinel/layered heterostructured nanowires are a self-assembly of a lot of nanoparticles, and the Li4Mn5O12 spinel phase is embedded inside the layered structure. When the material is used as cathode of LIBs, the spinel/layered heterostructured nanowires can display an extremely high invertible capacity of 290.1 mA h g-1 at 0.1 C and suppressive voltage fading. Moreover, it exhibits a favorable cycling stability with capacity retention of 94.4% after charging/discharging at 0.5 C for 200 cycles and it shows an extraordinary rate capability (183.9 mA h g-1, 10 C). The remarkable electrochemical properties can be connected with the spinel/layered heterostructure, which is in favor of Li+ transport kinetics and enhancing structural stability during the cyclic process.

Keywords: lithium rich; energy; layered heterostructured; spinel layered; rich oxide; lithium

Journal Title: ACS applied materials & interfaces
Year Published: 2017

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.