LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

One-Step Synthesis of CuO-Cu2O Heterojunction by Flame Spray Pyrolysis for Cathodic Photoelectrochemical Sensing of l-Cysteine.

Photo by kaitlynraeann from unsplash

CuO-Cu2O heterojunction was synthesized via a one-step flame spray pyrolysis (FSP) process and employed as photoactive material in construction of a photoelectrochemical (PEC) sensing device. The surface analysis showed that… Click to show full abstract

CuO-Cu2O heterojunction was synthesized via a one-step flame spray pyrolysis (FSP) process and employed as photoactive material in construction of a photoelectrochemical (PEC) sensing device. The surface analysis showed that CuO-Cu2O nanocomposites in the size less than 10 nm were formed and uniformly distributed on the electrode surface. Under visible light irradiation, the CuO-Cu2O-coated electrode exhibited admirable cathodic photocurrent response, owing to the favorable property of the CuO-Cu2O heterojunction such as strong absorption in the visible region and effective separation of photogenerated electron-hole pairs. On the basis of the interaction of l-cysteine (l-Cys) with Cu-containing compounds via the formation of Cu-S bond, the CuO-Cu2O was proposed as a PEC sensor for l-Cys detection. A declined photocurrent response of CuO-Cu2O to addition of l-Cys was observed. Influence factors including CuO-Cu2O concentration, coating amount of CuO-Cu2O, and applied bias potential on the PEC response toward l-Cys were optimized. Under optimum conditions, the photocurrent of the proposed sensor was linearly declined with increasing the concentration of l-Cys from 0.2 to 10 μM, with a detection limit (3S/N) of 0.05 μM. Moreover, this PEC sensor displayed high selectivity, reproducibility, and stability. The potential applicability of the proposed PEC sensor was assessed in human urine samples.

Keywords: cu2o; pec; cuo cu2o; cu2o heterojunction

Journal Title: ACS applied materials & interfaces
Year Published: 2017

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.