LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Pseudocapacitive Coating for Effective Capacitive Deionization.

Photo by amitherealperson from unsplash

Capacitive deionization (CDI) features a low-cost and energy-efficient desalination approach based on electrosorption of saline ions. To enhance the salt electrosorption capacity of CDI electrodes, we coat ion-selective pseudocapacitive layers… Click to show full abstract

Capacitive deionization (CDI) features a low-cost and energy-efficient desalination approach based on electrosorption of saline ions. To enhance the salt electrosorption capacity of CDI electrodes, we coat ion-selective pseudocapacitive layers (MnO2 and Ag) onto porous carbon electrodes (activated carbon cloth) with only minimal use of a conductive additive and a polymer binder (<1 wt % in total). Optimized pseudocapacitive electrodes result in excellent single-electrode specific capacitance (>300 F/g) and great cell stability (70% retention after 500 cycles). A CDI cell out of these pseudocapacitive electrodes yields as high charge efficiency as 83% and a remarkable salt adsorption capacity up to 17.8 mg/g. Our finding of outstanding CDI performance of the pseudocapacitive electrodes with no use of costly ion-exchange membranes highlights the significant role of a pseudocapacitive layer in the electrosorption process.

Keywords: pseudocapacitive coating; deionization; capacitive deionization; pseudocapacitive electrodes; coating effective

Journal Title: ACS applied materials & interfaces
Year Published: 2018

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.