LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Enhanced Solar Light Absorption and Photoelectrochemical Conversion Using TiN Nanoparticle-Incorporated C3N4-C Dot Sheets.

Photo from wikipedia

In this work, a promising strategy to increase the broadband solar light absorption was developed by synthesizing a composite of metal-free carbon nitride-carbon dots (C3N4-C dots) and plasmonic titanium nitride… Click to show full abstract

In this work, a promising strategy to increase the broadband solar light absorption was developed by synthesizing a composite of metal-free carbon nitride-carbon dots (C3N4-C dots) and plasmonic titanium nitride (TiN) nanoparticles (NPs) to improve the photoelectrochemical water-splitting performance under simulated solar radiation. Hot-electron injection from plasmonic TiN NPs to C3N4 played a role in photocatalysis, whereas C dots acted as catalysts for the decomposition of H2O2 to O2. The use of C dots also eliminated the need for a sacrificial reagent and prevented catalytic poisoning. By incorporating the TiN NPs and C dots, a sixfold improvement in the catalytic performance of C3N4 was observed. The proposed approach of combining TiN NPs and C dots with C3N4 proved effective in overcoming low optical absorption and charge recombination losses and also widens the spectral window, leading to improved photocatalytic activity.

Keywords: absorption; enhanced solar; solar light; absorption photoelectrochemical; tin nps; light absorption

Journal Title: ACS applied materials & interfaces
Year Published: 2018

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.