LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Transferrin-Copper Nanocluster-Doxorubicin Nanoparticles as Targeted Theranostic Cancer Nanodrug.

Photo by kdghantous from unsplash

Transferrin (Tf)-templated luminescent blue copper nanoclusters (Tf-Cu NCs) are synthesized. They are further formulated into spherical Tf-Cu NC-doxorubicin nanoparticles (Tf-Cu NC-Dox NPs) based on electrostatic interaction with doxorubicin (Dox). The… Click to show full abstract

Transferrin (Tf)-templated luminescent blue copper nanoclusters (Tf-Cu NCs) are synthesized. They are further formulated into spherical Tf-Cu NC-doxorubicin nanoparticles (Tf-Cu NC-Dox NPs) based on electrostatic interaction with doxorubicin (Dox). The as-synthesized Tf-Cu NC-Dox NPs are explored for bioimaging and targeted drug delivery to delineate high therapeutic efficacy. Förster resonance energy transfer (FRET) within the Tf-Cu NC-Dox NPs exhibited striking red luminescence, wherein the blue luminescence of Tf-Cu NCs (donor) is quenched due to absorption by Dox (acceptor). Interestingly, blue luminescence of Tf-Cu NCs is restored in the cytoplasm of cancer cells upon internalization of the NPs through overexpressed transferrin receptor (TfR) present on the cell surface. Finally, gradual release of Dox from the NPs leads to the generation of its red luminescence inside the nucleus. The biocompatible Tf-Cu NC-Dox NPs displayed superior targeting efficiency on TfR overexpressed cells (HeLa and MCF-7) as compared to the cells expressing less TfR (HEK-293 and 3T3-L1). Combination index (CI) revealed synergistic activity of Tf-Cu NCs and Dox in Tf-Cu NC-Dox NPs. In vivo assessment of the NPs on TfR positive Daltons lymphoma ascites (DLA) bearing mice revealed significant inhibition of tumor growth rendering prolonged survival of the mice.

Keywords: doxorubicin nanoparticles; dox nps; copper; doxorubicin

Journal Title: ACS applied materials & interfaces
Year Published: 2018

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.