LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Tellurophene-Based Random Copolymers for High Responsivity and Detectivity Photodetectors.

Photo by efekurnaz from unsplash

Organic photodetectors (OPDs) have attracted great attention because of their advantages including tunable response range, easy processability, and flexibility. Various conjugated polymers have been developed for high-performing OPDs. Herein, a… Click to show full abstract

Organic photodetectors (OPDs) have attracted great attention because of their advantages including tunable response range, easy processability, and flexibility. Various conjugated polymers have been developed for high-performing OPDs. Herein, a series of tellurophene-based random copolymers containing two typical electron-withdrawing units naphthalene diimide (NDI) and perylene diimide (PDI) are designed and synthesized. Through varying the ratio of PDI/NDI moieties of the analogous polymers, the optophysical properties and film morphology, together with photodetector performances, are systematically tuned. It was demonstrated that the photodetectors based on the polymer with the molar ratio of PDI/NDI units of 70/30 possessed strong photoinduced absorption and favorable morphology via transient absorption spectra and atomic force microscopy studies. As a result, a high responsivity about 19.1 A/W at 600 nm and an excellent detectivity more than 1012 Jones ranging from 350 to 600 nm were successfully achieved, which are among the highest values for OPDs and comparable to inorganic counterparts.

Keywords: random copolymers; high responsivity; tellurophene based; detectivity; based random

Journal Title: ACS applied materials & interfaces
Year Published: 2018

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.