LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Toward Universal SERS Detection of Disease Signaling Bioanalytes Using 3D Self-Assembled Nonplasmonic near-Quantum-Scale Silicon Probe.

Photo from wikipedia

Currently, the quantum-scale surface-enhanced Raman scattering (SERS) properties of Si materials have yet to be discovered for universal biosensing applications. In this study, a potential universal biosensing probe is generated… Click to show full abstract

Currently, the quantum-scale surface-enhanced Raman scattering (SERS) properties of Si materials have yet to be discovered for universal biosensing applications. In this study, a potential universal biosensing probe is generated by activating the SERS functionality of Si nanostructures through near quantum-scale (nQS) engineering. We introduce herein 3D nonplasmonic Si nanomesh structure with nQS defects for SERS biosensing applications. Through ionization of a single-crystal defect-free Si wafer, highly defect-rich Si subnano-orbs (sNOs) are fabricated and self-assemble as connective 3D Si nanomesh structures with enhanced SERS biosensing activity. By amending the laser ionization and ion-ion interactions, we observe the controlled synthesis of engineered nQS defects in the form of nQS-grain boundary disorder or surface nQS voids within the interconnected Si sNOs. To our knowledge, it is shown here for the first time that defect-rich Si nanomesh structures exhibit enhanced Raman activity, with the nQS morphological and crystallographic defects acting as the prime SERS contributors without a plasmonic contribution. The SERS biosensing sensitivity with the synthesized defect-rich Si nanomesh structures without an additional plasmonic material was evaluated using of a tripeptide biomarker l-glutathione (GSH); we observe an enhancement factor value of ∼102 for the GSH biomolecules with 10-9 M sensitivity, a phenomena to our knowledge that has yet to be reported. Additionally, the SERS detection of multiple disease-signaling biomolecules (cysteine, tryptophan, and methionine) is achieved at very low analyte concentration (10-9 M). These results indicate a potential new dimension to universal SERS biosensing applications with these unique nonplasmonic defect-rich 3D nQS-Si nanostructures.

Keywords: defect rich; near quantum; quantum scale; sers biosensing; sers detection; disease signaling

Journal Title: ACS applied materials & interfaces
Year Published: 2017

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.