The production of hydrogen through electrolysis is considered as a feasible strategy to quench the world's clean-energy thirst. Compared with water electrolysis, urea electrolysis presents a more promising prospect in… Click to show full abstract
The production of hydrogen through electrolysis is considered as a feasible strategy to quench the world's clean-energy thirst. Compared with water electrolysis, urea electrolysis presents a more promising prospect in the way that it could carry out sewage treatment as well as energy-efficient hydrogen production at the same time. Herein, highly porous pomegranate-like Ni/C was synthesized from multivariate metal-organic frameworks and exhibits excellent hydrogen evolution activity with an unprecedented low overpotential of 40 mV at the current density of 10 mA cm-2 in 1 M KOH, ranking among the best earth-abundant electrocatalysts deposited on glassy carbon electrodes reported to date. In addition, it also displays superb anodic urea oxidation activity with an onset potential of 1.33 V vs RHE. Furthermore, a two-electrode urea electrolyzer with Ni/C as both the cathode and anode electrocatalyst was fabricated and generates 52 times more hydrogen than the water electrolyzer under the same conditions.
               
Click one of the above tabs to view related content.