An efficient CH3NH3PbI3 perovskite solar cell whose performance is reproducible and shows reduced dependence on the processing conditions is fabricated using the cyclic urea compound 1,3-dimethyl-2-imidazolidinone (DMI) as an additive… Click to show full abstract
An efficient CH3NH3PbI3 perovskite solar cell whose performance is reproducible and shows reduced dependence on the processing conditions is fabricated using the cyclic urea compound 1,3-dimethyl-2-imidazolidinone (DMI) as an additive to the precursor solution of CH3NH3PbI3. X-ray diffraction analysis reveals that DMI weakly coordinates with PbI2 and forms a CH3NH3PbI3 film (film-DMI) with no intermediate phase. The surface of annealed film-DMI (film-DMI-A) was smooth, with an average crystal size of 1 μm. Photoluminescence and transient photovoltage measurements show that film-DMI-A exhibits a longer carrier lifetime than a CH3NH3PbI3 film prepared using the strongly coordinating additive dimethyl sulfoxide (DMSO) (film-DMSO-A) because of the reduced number of defect sites in film-DMI-A. A solar cell based on film-DMI-A exhibits a higher power conversion efficiency (17.6%) than that of a cell based on film-DMSO-A (15.8%). Furthermore, the performance of the film-DMI-A solar cell is less sensitive to the ratio between PbI2 and DMI, and film-DMI can be fabricated under a high relative humidity of 55%.
               
Click one of the above tabs to view related content.