LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Efficient and Reproducible CH3NH3PbI3 Perovskite Layer Prepared Using a Binary Solvent Containing a Cyclic Urea Additive.

Photo by seemurray from unsplash

An efficient CH3NH3PbI3 perovskite solar cell whose performance is reproducible and shows reduced dependence on the processing conditions is fabricated using the cyclic urea compound 1,3-dimethyl-2-imidazolidinone (DMI) as an additive… Click to show full abstract

An efficient CH3NH3PbI3 perovskite solar cell whose performance is reproducible and shows reduced dependence on the processing conditions is fabricated using the cyclic urea compound 1,3-dimethyl-2-imidazolidinone (DMI) as an additive to the precursor solution of CH3NH3PbI3. X-ray diffraction analysis reveals that DMI weakly coordinates with PbI2 and forms a CH3NH3PbI3 film (film-DMI) with no intermediate phase. The surface of annealed film-DMI (film-DMI-A) was smooth, with an average crystal size of 1 μm. Photoluminescence and transient photovoltage measurements show that film-DMI-A exhibits a longer carrier lifetime than a CH3NH3PbI3 film prepared using the strongly coordinating additive dimethyl sulfoxide (DMSO) (film-DMSO-A) because of the reduced number of defect sites in film-DMI-A. A solar cell based on film-DMI-A exhibits a higher power conversion efficiency (17.6%) than that of a cell based on film-DMSO-A (15.8%). Furthermore, the performance of the film-DMI-A solar cell is less sensitive to the ratio between PbI2 and DMI, and film-DMI can be fabricated under a high relative humidity of 55%.

Keywords: cyclic urea; dmi; film dmi; film; ch3nh3pbi3 perovskite

Journal Title: ACS applied materials & interfaces
Year Published: 2018

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.