LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Suppression of Cation Segregation in (La,Sr)CoO3-δ by Elastic Energy Minimization.

Photo by mbrunacr from unsplash

Strontium segregation at perovskite surfaces deteriorates the oxygen reduction reaction kinetics of cathodes and therefore the long-term stability of solid oxide fuel cells (SOFCs). For the systematic and quantitative assessment… Click to show full abstract

Strontium segregation at perovskite surfaces deteriorates the oxygen reduction reaction kinetics of cathodes and therefore the long-term stability of solid oxide fuel cells (SOFCs). For the systematic and quantitative assessment of the elastic energy in perovskite oxides, which is known to be one of the main origins for dopant segregation, we report the fractional free volume as a new descriptor for the elastic energy in the perovskite oxide system. To verify the fractional free volume model, three samples were prepared with different A-site dopants: La0.6Sr0.4CoO3-δ, La0.6Sr0.2Ca0.2CoO3-δ, and La0.6Ca0.4CoO3-δ. A combination of the theoretical calculations of the segregation energy and oxide formation energy and experimental measurements of the structural, chemical, and electrochemical degradation substantiated the validity of using the fractional free volume to predict the dopant segregation. Furthermore, the dopant segregation could be significantly suppressed by increasing the fractional free volume in the perovskite oxides with dopant substitution. Our results provide insight into dopant segregation from the elastic energy perspective and offer a design guideline for SOFC cathodes with enhanced stability at elevated temperatures.

Keywords: energy; elastic energy; dopant segregation; fractional free; free volume; segregation

Journal Title: ACS applied materials & interfaces
Year Published: 2018

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.