LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Achieving 14.4% Alcohol-Based Solution-Processed Cu(In,Ga)(S,Se)2 Thin Film Solar Cell through Interface Engineering.

Photo from wikipedia

An optimization of band alignment at the p-n junction interface is realized on alcohol-based solution-processed Cu(In,Ga)(S,Se)2 (CIGS) thin film solar cells, achieving a power-conversion-efficiency (PCE) of 14.4%. To obtain a… Click to show full abstract

An optimization of band alignment at the p-n junction interface is realized on alcohol-based solution-processed Cu(In,Ga)(S,Se)2 (CIGS) thin film solar cells, achieving a power-conversion-efficiency (PCE) of 14.4%. To obtain a CIGS thin film suitable for interface engineering, we designed a novel "3-step chalcogenization process" for Cu2- xSe-derived grain growth and a double band gap grading structure. Considering S-rich surface of the CIGS thin film, an alternative ternary (Cd,Zn)S buffer layer is adopted to build favorable "spike" type conduction band alignment instead of "cliff" type. Suppression of interface recombination is elucidated by comparing recombination activation energies using a dark J- V- T analysis.

Keywords: solution processed; alcohol based; thin film; based solution; interface

Journal Title: ACS applied materials & interfaces
Year Published: 2018

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.