LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Unveiling the Different Emission Behavior of Polytriazoles Constructed from Pyrazine-Based AIE Monomers by Click Polymerization.

Photo by clemono from unsplash

Polymers with aggregation-induced emission (AIE) characteristics have aroused tremendous interest because of their potential applications in large-area flexible display and luminescent self-assembling, and as stimuli-responsive and porous materials. However, the… Click to show full abstract

Polymers with aggregation-induced emission (AIE) characteristics have aroused tremendous interest because of their potential applications in large-area flexible display and luminescent self-assembling, and as stimuli-responsive and porous materials. However, the design of AIE-active polymers is always not as easy as that of small molecules because their properties are hard to predict. In some cases, the polymers prepared from the AIE-active monomers show the aggregation-caused quenching (ACQ) instead of AIE effect. To understand the structure-property relationship of the polymers constructed from the AIE monomers, in this paper, two pyrazine-containing AIE monomers were utilized to construct luminescent polymers by click polymerization. The photophysical property investigation indicates that the polytriazole containing tetraphenylpyrazine units is AIE-active, whereas that bearing 2,3-dicyano-5,6-diphenylpyrazine units suffers from the ACQ effect. Through systematical investigation, the cause for such difference was unveiled. Thus, this work provides a useful guidance for further design of AIE-active polymers.

Keywords: aie monomers; aie active; click polymerization; pyrazine; emission

Journal Title: ACS applied materials & interfaces
Year Published: 2018

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.