LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Controlling Pore Shape and Size of Interpenetrated Anion-Pillared Ultramicroporous Materials Enables Molecular Sieving of CO2 Combined with Ultrahigh Uptake Capacity.

Photo from wikipedia

The separation of carbon dioxide (CO2) from hydrocarbons is a critical process for the production of clean energy and high-purity chemicals. Adsorption based on molecular sieving is an energy-saving separation… Click to show full abstract

The separation of carbon dioxide (CO2) from hydrocarbons is a critical process for the production of clean energy and high-purity chemicals. Adsorption based on molecular sieving is an energy-saving separation process; however, most of molecular sieves with narrow and straight pore channels exhibit low CO2 uptake capacity. Here, we report that a twofold interpenetrated copper coordination network with a consecutive pocket-like pore structure, namely, SIFSIX-14-Cu-i (SIFSIX = hexafluorosilicate, 14 = 4,4'-azopyridine, i = interpenetrated) is a remarkable CO2/CH4 molecular sieving adsorbent which completely blocks the larger CH4 molecule with unprecedented selectivity, whereas it has excellent CO2 uptake (172.7 cm3/cm3) under the ambient condition. The exceptional separation performance of SIFSIX-14-Cu-i is attributed to its unique pore shape and functional pore surface, which combine a contracted pore window (3.4 Å) and a relatively large pore cavity decorated with high density of inorganic anions. Dispersion-corrected density functional theory calculation and neutron powder diffraction were performed to understand the CO2 binding sites. The practical feasibility of SIFSIX-14-Cu-i for CO2/CH4 mixtures separation was validated by experimental breakthrough tests. This study not only demonstrates the great potential of SIFSIX-14-Cu-i for CO2 separation but also provides important clues for other gas separations.

Keywords: uptake capacity; co2; separation; pore shape; molecular sieving; pore

Journal Title: ACS applied materials & interfaces
Year Published: 2018

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.