In this work, TiO2 nanowires synthesized from a wet-corrosion process were presented for peptide sequencing by photocatalytic reaction with UV radiation. For the photocatalytic decomposition of peptides, the peptide sample… Click to show full abstract
In this work, TiO2 nanowires synthesized from a wet-corrosion process were presented for peptide sequencing by photocatalytic reaction with UV radiation. For the photocatalytic decomposition of peptides, the peptide sample was dropped on a target plate containing synthesized TiO2 nanowire zones and UV-irradiated. Subsequently, the target plate was analyzed by laser desorption/ionization time-of-flight (LDI-TOF) mass spectrometry using the synthesized TiO2 nanowires as a solid matrix. The feasibility of peptide sequencing based on the photocatalytic reaction with the synthesized TiO2 nanowires was demonstrated using six types of peptides GHP9 (G1-H-P-Q-G2-K1-K2-K3-K4, 1006.59 Da), BPA-1(K1-S1-L-E-N-S2-Y-G1-G2-G3-K2-K3-K4, 1394.74 Da), PreS1(F1-G-A-N1-S-N2-N3-P1-D1-W-D2-F2-N4-P2-N5, 1707.68 Da), HPQ peptide-1 (G-Y-H-P-Q-R-K, 884.45 Da), HPQ peptide-2 (K-R-H-P-Q-Y-G, 884.45 Da), and HPQ peptide-3 (R-Y-H-P-Q-G-K, 884.45 Da). The identification of three different peptides with the same molecular weight was also demonstrated by using the synthesized TiO2 nanowires for their photocatalytic decomposition as well as for LDI-TOF mass spectrometry as a solid-matrix.
               
Click one of the above tabs to view related content.