LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

TiO2 Nanowires from Wet-Corrosion Synthesis for Peptide Sequencing Using Laser Desorption/Ionization Time-of-Flight Mass Spectrometry.

Photo by paramir from unsplash

In this work, TiO2 nanowires synthesized from a wet-corrosion process were presented for peptide sequencing by photocatalytic reaction with UV radiation. For the photocatalytic decomposition of peptides, the peptide sample… Click to show full abstract

In this work, TiO2 nanowires synthesized from a wet-corrosion process were presented for peptide sequencing by photocatalytic reaction with UV radiation. For the photocatalytic decomposition of peptides, the peptide sample was dropped on a target plate containing synthesized TiO2 nanowire zones and UV-irradiated. Subsequently, the target plate was analyzed by laser desorption/ionization time-of-flight (LDI-TOF) mass spectrometry using the synthesized TiO2 nanowires as a solid matrix. The feasibility of peptide sequencing based on the photocatalytic reaction with the synthesized TiO2 nanowires was demonstrated using six types of peptides GHP9 (G1-H-P-Q-G2-K1-K2-K3-K4, 1006.59 Da), BPA-1(K1-S1-L-E-N-S2-Y-G1-G2-G3-K2-K3-K4, 1394.74 Da), PreS1(F1-G-A-N1-S-N2-N3-P1-D1-W-D2-F2-N4-P2-N5, 1707.68 Da), HPQ peptide-1 (G-Y-H-P-Q-R-K, 884.45 Da), HPQ peptide-2 (K-R-H-P-Q-Y-G, 884.45 Da), and HPQ peptide-3 (R-Y-H-P-Q-G-K, 884.45 Da). The identification of three different peptides with the same molecular weight was also demonstrated by using the synthesized TiO2 nanowires for their photocatalytic decomposition as well as for LDI-TOF mass spectrometry as a solid-matrix.

Keywords: wet corrosion; tio2 nanowires; peptide sequencing; mass spectrometry

Journal Title: ACS applied materials & interfaces
Year Published: 2018

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.