LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Injectable Hydrogels Coencapsulating Granulocyte-Macrophage Colony-Stimulating Factor and Ovalbumin Nanoparticles to Enhance Antigen Uptake Efficiency.

Photo by jupp from unsplash

The combination of an antigen and adjuvant has synergistic effects on an immune response. Coadministration of an antigen and a granulocyte-macrophage colony-stimulating factor (GM-CSF) hydrogel delivery system will afford a… Click to show full abstract

The combination of an antigen and adjuvant has synergistic effects on an immune response. Coadministration of an antigen and a granulocyte-macrophage colony-stimulating factor (GM-CSF) hydrogel delivery system will afford a novel strategy for enhancement of an immune response because of the dual role of the hydrogel as a vaccine carrier with a sustained release and a platform for recruiting dendritic cells (DCs). Herein, an injectable poly(caprolactone)-poly(ethylene glycol)-poly(caprolactone) thermosensitive hydrogel coencapsulating GM-CSF and ovalbumin nanoparticles was developed to enhance antigen uptake efficiency. The GM-CSF released from the hydrogel ensured accumulation of DCs; this effect improved the antigen uptake efficiency with the targeted delivery to antigen-presenting cells. Furthermore, the dual delivery system induced a stronger immune effect, including higher CD8+ T proportion, interferon γ secretion, and a greater cytotoxic T lymphocyte response, which may benefit from the recruitment of DCs, increasing antigen residence time, and the controllable antigen release owing to the combined effect of the hydrogel and nanoparticles. Meanwhile, the real-time antigen delivery process in vivo was revealed by a noninvasive fluorescence imaging method. All of the results indicated that the visible dual delivery system may have a greater potential for the efficient and trackable vaccine delivery.

Keywords: hydrogel; uptake efficiency; delivery; antigen; antigen uptake

Journal Title: ACS applied materials & interfaces
Year Published: 2018

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.