We developed a novel all-optical method for monitoring the diffusion of a small quencher molecule through a polymer layer in a bilayer architecture. Experimentally, we injected C60 molecules from a… Click to show full abstract
We developed a novel all-optical method for monitoring the diffusion of a small quencher molecule through a polymer layer in a bilayer architecture. Experimentally, we injected C60 molecules from a C60 layer into the adjacent donor layer by stepwise heating, and we measured how the photoluminescence (PL) of the donor layer becomes gradually quenched by the incoming C60 molecules. By analyzing the temporal evolution of the PL, the diffusion coefficient of C60 can be extracted, as well as its activation energy and an approximate concentration profile in the film. We applied this technique to three carbazole-based low-bandgap polymers with different glass temperatures with a view to study the impact of structural changes of the polymer matrix on the diffusion process. We find that C60 diffusion is thermally activated and not driven by WFL-type collective motion above Tg but rather by local motions mediated by the sidechains. The results are useful as guidance for material design and device engineering, and the approach can be adapted to a wide range of donor and acceptor materials.
               
Click one of the above tabs to view related content.