LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

On-Chip Studies of Magnetic Stimulation Effect on Single Neural Cell Viability and Proliferation on Glass and Nanoporous Surfaces.

Photo from wikipedia

Transcranial magnetic stimulation (TMS) is a noninvasive neuromodulation technique, an FDA-approved treatment method for various neurological disorders such as depressive disorder, Parkinson's disease, post-traumatic stress disorder, and migraine. However, information… Click to show full abstract

Transcranial magnetic stimulation (TMS) is a noninvasive neuromodulation technique, an FDA-approved treatment method for various neurological disorders such as depressive disorder, Parkinson's disease, post-traumatic stress disorder, and migraine. However, information concerning the molecular/cellular-level mechanisms of neurons under magnetic simulation (MS), particularly at the single neural cell level, is still lacking, resulting in very little knowledge of the effects of MS on neural cells. In this paper, the effects of MS on the behaviors of neural cell N27 at the single-cell level on coverslip glass substrate and anodic aluminum oxide (AAO) nanoporous substrate are reported for the first time. First, it has been found that the MS has a negligible cytotoxic effect on N27 cells. Second, MS decreases nuclear localization of paxillin, a focal adhesion protein that is known to enter the nucleus and modulate transcription. Third, the effect of MS on N27 cells can be clearly observed over 24 h, the duration of one cell cycle, after MS is applied to the cells. The size of cells under MS was found to be statistically smaller than that of cells without MS after one cell cycle. Furthermore, directly monitoring cell division process in the microholders on a chip revealed that the cells under MS generated statistically more daughter cells in one average cell cycle time than those without MS. All these results indicate that MS can affect the behavior of N27 cells, promoting their proliferation and regeneration.

Keywords: single neural; neural cell; magnetic stimulation; effect; cell

Journal Title: ACS applied materials & interfaces
Year Published: 2018

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.