LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

3D Interconnected MoS2 with Enlarged Interlayer Spacing Grown on Carbon Nanofibers as a Flexible Anode Toward Superior Sodium-Ion Batteries.

Photo from wikipedia

Molybdenum disulfide (MoS2) has attracted extensive research interest as a fascinating anode for sodium-ion batteries (SIBs) because of its high specific capacity of 670 mA h g-1. However, unsatisfied cycling… Click to show full abstract

Molybdenum disulfide (MoS2) has attracted extensive research interest as a fascinating anode for sodium-ion batteries (SIBs) because of its high specific capacity of 670 mA h g-1. However, unsatisfied cycling durability and poor rate performance are two barriers that hinder MoS2 for practical application in SIBs. Herein, 3D interconnected MoS2 with enlarged interlayer spacing epitaxially grown on 1D electrospinning carbon nanofibers (denoted as MoS2@CNFs) was prepared as a flexible anode for SIBs via l-cysteine-assisted hydrothermal method. Benefitting from the C-O-Mo bonding between the CNFs and MoS2 as well as the rational design with novel structure, including the well-retained 3D interconnected and conductive MoS2@CNFs networks and expanded (002) plane interlayer space, the flexible MoS2@CNFs electrode achieves a remarkable specific capacity (528 mA h g-1 at 100 mA g-1), superior rate performance (412 mA h g-1 at 1 A g-1), and ultralong cycle life (over 600 cycles at 1 A g-1 with excellent Coulombic efficiencies exceeding 99%). The elaborate strategy developed in this work opens a new avenue to prepare highly improved energy storage materials, especially suitable for flexible electronics.

Keywords: sodium ion; interlayer; ion batteries; enlarged interlayer; interconnected mos2; mos2 enlarged

Journal Title: ACS applied materials & interfaces
Year Published: 2018

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.