LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Enhanced Bioactivity of Collagen Fiber Functionalized with Room Temperature Atomic Layer Deposited Titania.

Photo from wikipedia

Surface modifications of a biomaterial like collagen are crucial in improving the surface properties and thus enhancing the functionality and performance of such a material for a variety of biomedical… Click to show full abstract

Surface modifications of a biomaterial like collagen are crucial in improving the surface properties and thus enhancing the functionality and performance of such a material for a variety of biomedical applications. In this study, a commercially available collagen membrane's surface was functionalized by depositing an ultrathin film of titania or titanium dioxide (TiO2) using a room temperature atomic layer deposition (ALD) process. A novel titanium precursor-oxidizer combination was used for this process in a custom-made ALD reactor. Surface characterizations revealed successful deposition of uniform, conformal TiO2 thin film on the collagen fibrillar surface, and consequently, the fibers became thicker making the membrane pores smaller. The in vitro bioactivity of the ALD-TiO2 thin film coated collagen was investigated for the first time using cell proliferation and a calcium phosphate mineralization assay. The TiO2-coated collagen demonstrated improved biocompatibility promoting higher growth and proliferation of human osteoblastic and mesenchymal stem cells when compared to that of noncoated collagen. A higher level of calcium phosphate or apatite formation was observed on ALD modified collagen surface as compared to that on noncoated collagen. Therefore, this novel material can be promising in bone tissue engineering applications.

Keywords: collagen; atomic layer; surface; room temperature; titania; temperature atomic

Journal Title: ACS applied materials & interfaces
Year Published: 2018

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.