LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Electroactive Mg2+-Hydroxyapatite Nanostructured Networks against Drug-Resistant Bone Infection Strains.

Photo by otto_norin from unsplash

Surface colonization competition between bacteria and host cells is one of the critical factors involved in tissue/implant integration. Current biomaterials are evaluated for their ability both of withstanding favorable responses… Click to show full abstract

Surface colonization competition between bacteria and host cells is one of the critical factors involved in tissue/implant integration. Current biomaterials are evaluated for their ability both of withstanding favorable responses of host tissue cells and of resisting bacterial contamination. In this work, the antibacterial ability of biocompatible Mg2+-substituted nanostructured hydroxyapatite (HA) was investigated. The densities of Staphylococcus aureus, Pseudomonas aeruginosa, and Escherichia coli strains were significantly decreased after culture in the presence of Mg-substituted HA materials in direct correlation with Mg2+-Ca2+ switch in the HA lattice. It was noticed that this decrease was accompanied by a minimal alteration of bacterial environments; therefore, the Mg2+-HA antibacterial effect was associated with the material surface topography and it electroactive behavior. It was observed that 2.23 wt % Mg2+-HA samples exhibited the best antibacterial performance; it decreased 2-fold the initial population of E. coli, P. aeruginosa, and S. aureus at the intermediate concentration (50 mg mL-1 of broth). Our results reinforce the potential of Mg-HA nanostructured materials to be used in antibacterial coatings for implantable devices and/or medicinal materials to prevent bone infection and to promote wound healing.

Keywords: infection; bone infection; electroactive mg2; hydroxyapatite nanostructured; mg2 hydroxyapatite; nanostructured networks

Journal Title: ACS applied materials & interfaces
Year Published: 2018

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.