LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

"Dark Deposition" of Ag Nanoparticles on TiO2: Improvement of Electron Storage Capacity To Boost "Memory Catalysis" Activity.

Photo from wikipedia

"Memory catalysis" (MC) studies have received appreciable attention recently because of the unique talent to retain the catalytic performance in the dark condition. However, the MC activity is still low… Click to show full abstract

"Memory catalysis" (MC) studies have received appreciable attention recently because of the unique talent to retain the catalytic performance in the dark condition. However, the MC activity is still low owing to the relatively limited electron storage capacity of the present materials. Here, a TiO2@Ag composite was synthesized by a "dark-deposition (DD)" method, which is based on the electron trap effect of TiO2. Unlike traditional photodeposition (PD), an exploration of the morphology and chemical compositions of as-prepared samples shows that DD can inhibit the growth of Ag nanoparticles and the formation of Ag2O, which greatly improve the electron storage capacity. We further demonstrated that the maximum electronic capacity was in the order of TiO2@Ag-DD (1 μmol/mg) > TiO2@Ag-PD (0.35 μmol/mg) > TiO2 (0.11 μmol/mg). Moreover, the enhanced MC activity was confirmed by various degradation experiments. Especially, the use of TiO2@Ag-DD as a round-the-clock catalyst for the degradation of multicomponent pollutants has also been achieved. This strategy opens a door for enhancing the MC activity and reveals that the coupling of photocatalysis and MC may provide a new opportunity for the continuous removal of pollutants in day and night. It also may be extended to other fields, such as energy storage and continuous disinfection.

Keywords: storage capacity; storage; electron storage; activity

Journal Title: ACS applied materials & interfaces
Year Published: 2018

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.