LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Transfer Printing of Sub-5 μm Graphene Electrodes for Flexible Microsupercapacitors.

Photo by sarandywestfall_photo from unsplash

Printed graphene microsupercapacitors (MSCs) are attractive for scalable and low-cost on-chip energy storage for distributed electronic devices. Although electronic devices have experienced significant scaling to smaller formats, the corresponding miniaturization… Click to show full abstract

Printed graphene microsupercapacitors (MSCs) are attractive for scalable and low-cost on-chip energy storage for distributed electronic devices. Although electronic devices have experienced significant scaling to smaller formats, the corresponding miniaturization of energy storage components has been limited, with a typical resolution of ∼30 μm for printed graphene patterns to date. Transfer printing is demonstrated here for patterning graphene electrodes with fine line and spacing resolution less than 5 μm. The resulting devices exhibit an exceptionally small footprint (∼0.0067 mm2), which provides, to the best of our knowledge, the smallest printed graphene MSCs. Despite this, the devices retain excellent performance with a high areal capacitance of ∼6.63 mF/cm2 along with excellent electrochemical stability and mechanical flexibility, resulting from an efficient nonplanar electrode structure and an optimized two-step photoannealing method. As a result, this miniaturization strategy facilitates the on-chip integration of printed graphene MSCs to power emerging electronic devices.

Keywords: printed graphene; graphene; graphene electrodes; electronic devices; printing sub; transfer printing

Journal Title: ACS applied materials & interfaces
Year Published: 2018

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.