Herein, we presented waxberry-like core-satellite (C-S) nanoparticles (NPs) prepared by an in situ growth of satellite gold NPs on spherical phospholipid bilayer-coated gold cores. The fluidic lipid bilayer cross-linker was… Click to show full abstract
Herein, we presented waxberry-like core-satellite (C-S) nanoparticles (NPs) prepared by an in situ growth of satellite gold NPs on spherical phospholipid bilayer-coated gold cores. The fluidic lipid bilayer cross-linker was reported for the first time, which imparted several novel morphological and optical properties to the C-S NPs. First, it regulated the anisotropic growth of the satellite NPs into vertically oriented nanorods on the core NP surface. Thus, an interesting waxberry-like nanostructure could be obtained, which was different from the conventional raspberry-like C-S structures decorated with spherical satellite NPs. Second, the satellite NPs were "soft-landed" on the lipid bilayer and could move on the core NP surface under certain conditions. The movement induced tunable plasmonic features in the C-S NPs. Furthermore, the fluidic lipid bilayer was capable of not only holding an abundance of reporter molecules but also delivering them to the hotspots at the junctions between the core and satellite NPs, which made the C-S NPs an excellent candidate for preparing ultrasensitive surface-enhanced Raman scattering (SERS) tags. The bioimaging capabilities of the C-S NP-based SERS tags were successfully demonstrated in living cells and mice. The developed SERS tags hold great potential for bioanalysis and medical diagnostics.
               
Click one of the above tabs to view related content.