LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Structuring of Organic Solvents at Solid Interfaces and Ramifications for Antimalarial Adsorption on β-Hematin Crystals.

Photo by francogio from unsplash

A critical aspect of material synthesis is solvent structuring at solid-liquid interfaces, which can impact the adsorption of solute and growth modifiers on an underlying substrate. In general, the impact… Click to show full abstract

A critical aspect of material synthesis is solvent structuring at solid-liquid interfaces, which can impact the adsorption of solute and growth modifiers on an underlying substrate. In general, the impact of solvent structuring on molecular sorbate interactions with solid sorbents is poorly understood. This is particularly true for processes that occur in organic media, such as hematin crystallization, which is crucial to the survival of malaria parasites. Here, we use chemical force microscopy and molecular modeling to analyze the interactions between functional moieties of known antimalarials and the interface between β-hematin crystals and a mixed organic (octanol)-aqueous solvent. We show that the β-hematin surface, patterned in parallel hydrophobic and hydrophilic stripes, engenders the assembly of up to five layers of octanol molecules aligned parallel to the crystal surface. In contrast, studies of solvent structuring on a disordered glass surface reveal that octanol molecules align perpendicular to the interface. The distinct octanol arrays direct molecule adsorption at the respective interfaces. At both substrates, we also find stabilized pockets of aqueous nanophase lining the surfaces. A combination of experimental analyses and modeling of solvent structuring provides crucial insights into the association of hematin molecules with growing crystals as well as the adsorption and mobility of antimalarial drugs. Moreover, our findings offer a general perspective on the collective behaviors of complex organic solvents that may apply to a broad range of interactions at solid-liquid interfaces.

Keywords: hematin crystals; adsorption; organic solvents; structuring organic; solvent structuring; hematin

Journal Title: ACS applied materials & interfaces
Year Published: 2018

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.