LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Polyhedral Oligomeric Silsesquioxane (POSS)-Based Cationic Conjugated Oligoelectrolyte/Porphyrin for Efficient Energy Transfer and Multiamplified Antimicrobial Activity.

Photo from wikipedia

Cationic quaternary ammonium (QA) groups and reactive oxygen species as two main approaches for antibacterial study have been intensively studied. Herein, we report a multifunctional antimicrobial agent (porphyrin-POSS-OPVE, PPO), which… Click to show full abstract

Cationic quaternary ammonium (QA) groups and reactive oxygen species as two main approaches for antibacterial study have been intensively studied. Herein, we report a multifunctional antimicrobial agent (porphyrin-POSS-OPVE, PPO), which combines bacterial membrane intercalation, high density of local QA groups, efficient energy transfer, significantly reduced aggregation, and high water solubility into one single molecule. The light-harvesting PPO contains multiple donor-absorbing arms (oligo( p-phenylenevinylene) electrolytes, OPVEs) on its globular periphery and a central porphyrin acceptor in the core by using three-dimensional nanocages (polyhedral oligomeric silsesquioxanes, POSSs) as bridges. The antiaggregation ability of POSS and the highly efficient energy transfer from multiple OPVE arms to porphyrin could greatly amplify singlet oxygen generation in PPO. Particularly, OPVEs with QA terminal chains were able to intercalate into Escherichia coli membranes, which facilitated 1O2 diffusion and bacterial cell membrane disintegration by QA groups. The increased local cationic QA charges in OPVE arms can also enhance the biocidal activity of PPO. Benefiting from these satisfactory features, PPO exhibits multiamplified antibacterial efficacy under a very low concentration level and white light dose (400-700 nm, 6 mW·cm-2, 5 min, 1.8 J·cm-2) to Escherichia coli (8 μM) and Staphylococcus aureus (500 nM). Therefore, PPO shows great potential for photodynamic antimicrobial chemotherapy at a much lower irradiation light dose and photosensitizer concentration level compared to previous reports.

Keywords: efficient energy; porphyrin; energy transfer; polyhedral oligomeric

Journal Title: ACS applied materials & interfaces
Year Published: 2018

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.