LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Macrophage-Mediated Exocytosis of Elongated Nanoparticles Improves Hepatic Excretion and Cancer Phototherapy.

Photo from wikipedia

The introduction of nanoparticle-mediated delivery and therapy has revolutionized cancer treatment approaches. However, there has been limited success in clinical trials because current approaches have not simultaneously satisfied therapeutic efficacy… Click to show full abstract

The introduction of nanoparticle-mediated delivery and therapy has revolutionized cancer treatment approaches. However, there has been limited success in clinical trials because current approaches have not simultaneously satisfied therapeutic efficacy and biosafety criteria to an adequate degree. Here, we employ efficient macrophage-mediated exocytosis of elongated nanoparticles to facilitate their localization in tumor cells for cancer therapy and their transport to hepatocytes for hepatobiliary excretion. In vitro studies show that PEGylated high-aspect ratio gold nanoparticles exit macrophages more rapidly and remain in tumor cells longer, compared with low-aspect ratio and spherical nanoparticles. In tumors, high-aspect ratio nanoparticles tend to stay in tumor cells and escape from tumor-associated macrophages when they are taken up by those cells. In the liver, high-aspect ratio nanoparticles cleared by Kupffer cells mostly take the hepatobiliary excretion pathway through efficient Kupffer cell-hepatocyte transfer. Furthermore, we demonstrate that time-dependent localization of elongated gold nanoparticles toward tumor cells in tumor tissues enhances the overall phototherapeutic outcome. Engineering nanoparticles to modulate their exocytosis provides a new approach to improve cancer nanomedicine and pave the way toward clinical translation.

Keywords: excretion; mediated exocytosis; macrophage mediated; cancer; exocytosis; tumor

Journal Title: ACS applied materials & interfaces
Year Published: 2018

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.