LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Zigzag-Shaped Silver Nanoplates: Synthesis via Ostwald Ripening and Their Application in Highly Sensitive Strain Sensors.

Photo by geraninmo from unsplash

Zigzag-shaped Ag nanoplates display unique anisotropic planar structures with unusual jagged edges and relatively large lateral dimensions. These characteristics make such nanoplates promising candidates for metal inks in printed electronics,… Click to show full abstract

Zigzag-shaped Ag nanoplates display unique anisotropic planar structures with unusual jagged edges and relatively large lateral dimensions. These characteristics make such nanoplates promising candidates for metal inks in printed electronics, which can be used for realizing stretchable electrodes. In the current work, we used a one-pot coordination-based synthetic strategy to synthesize zigzag-shaped Ag nanoplates. In the synthetic procedure, cyanuric acid was used both as a ligand of the Ag+ ion, hence producing complex structures and controlling the kinetics of the reduction of the cation, and as a capping agent that promoted the lateral growth of the Ag nanoplates. Hence, cyanuric acid played a crucial role in the formation of zigzag-shaped nanoplates. In contrast to previous studies that reported oriented attachment to be the predominant mechanism responsible for the growth of zigzag-shaped nanoplates, Ostwald ripening was the dominant growth mechanism in the current work. Our findings on the particle morphology and crystalline structure of the Ag nanoplates motivated us to use them as conductive materials for stretchable strain sensors. Strain sensors based on nanocomposites of our zigzag-shaped Ag nanoplate and polydimethylsiloxane in the form of a sandwich structure were successfully produced by following a simple, low-cost, and solution-processable method. The strain sensors exhibited extremely high sensitivity (gauge factor ≈ 2000), high stretchability with a linear response (≈27%), and high reliability, all of which allowed the sensor to monitor diverse human motions, including joint movement and phonation.

Keywords: ostwald ripening; zigzag shaped; strain sensors; shaped nanoplates

Journal Title: ACS applied materials & interfaces
Year Published: 2018

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.