LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Enhanced Thermoelectric Properties of Boron-Substituted Single-Walled Carbon Nanotube Films.

Photo by julienlphoto from unsplash

Atomic doping is the most fundamental approach to modulating the transport properties of carbon nanotubes. In this paper, we demonstrate the enhanced thermoelectric properties of boron-substituted single-walled carbon nanotube (B-SWCNT)… Click to show full abstract

Atomic doping is the most fundamental approach to modulating the transport properties of carbon nanotubes. In this paper, we demonstrate the enhanced thermoelectric properties of boron-substituted single-walled carbon nanotube (B-SWCNT) films. The developed two-step synthesis of large quantities of B-SWCNTs readily enables the measurements of thermoelectricity of bulk B-SWCNT films. Complementary structural characterization implies the unique configuration of boron atoms at the doping sites of SWCNTs, successfully enabling carrier doping to SWCNTs. The developed boron substitution, in combination with chemical doping, is found to substantially improve the thermoelectric properties.

Keywords: properties boron; thermoelectric properties; substituted single; enhanced thermoelectric; boron substituted; single walled

Journal Title: ACS applied materials & interfaces
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.