The performance of low-temperature carbon-based perovskite solar cells (C-PSCs) with high commercial potential was hampered by the inferior interface between the absorber and carbon electrode. In this work, poly[bis(4-phenyl)(2,4,6-trimethylphenyl)amine] (PTAA)… Click to show full abstract
The performance of low-temperature carbon-based perovskite solar cells (C-PSCs) with high commercial potential was hampered by the inferior interface between the absorber and carbon electrode. In this work, poly[bis(4-phenyl)(2,4,6-trimethylphenyl)amine] (PTAA) was dissolved in an antisolvent for spin-coating perovskite (CH3NH3PbI3, MAPI) films, which was applied to modify both the MAPI films and the interface between the MAPI layer and carbon electrode by gradient engineering. Finally, the C-PSCs based on MAPI-PTAA gradient bulk heterojunction films achieved a power conversion efficiency of 13.0% with an active area of 1 cm2, 26% higher than that of pristine MAPI cells, because of the passivated trap states, accelerated hole extraction, and improved crystalline properties in absorber films.
               
Click one of the above tabs to view related content.