LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Charge Carrier Polarity Modulation in Diketopyrrolopyrrole-Based Low Band Gap Semiconductors by Terminal Functionalization.

Photo from wikipedia

Organic semiconductors with variable charge carrier polarity are required for optoelectronic applications. Herein, we report the synthesis of three novel diketopyrrolopyrrole (DPP)-based D-A molecules having three different terminal groups (amide,… Click to show full abstract

Organic semiconductors with variable charge carrier polarity are required for optoelectronic applications. Herein, we report the synthesis of three novel diketopyrrolopyrrole (DPP)-based D-A molecules having three different terminal groups (amide, ester, and dicyano) and study their electronic properties. An increase in electron acceptor strength from amide to dicyano leads to a bathochromic shift in absorption. Photoconductivity and field effect transistor (FET) measurements confirmed that a small increase in acceptor strength can result in a large change in the charge transport properties from p-type to n-type. The molecule with an amide group, DPP-amide, exhibited a moderate p-type mobility (1.3 × 10-2 cm2 V-1 s-1), whereas good n-type mobilities were observed for molecules with an ester moiety, DPP-ester (1.5 × 10-2 cm2 V-1 s-1), and with a dicyano group, DPP-DCV (1 × 10-2 cm2 V-1 s-1). The terminal functional group modification approach presented here is a simple and efficient method to alter the charge carrier polarity of organic semiconductors.

Keywords: carrier polarity; polarity modulation; charge carrier

Journal Title: ACS applied materials & interfaces
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.