LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

3D-Printed Surface Architecture Enhancing Superhydrophobicity and Viscous Droplet Repellency.

Photo from wikipedia

Macrotextured superhydrophobic surfaces can reduce droplet-substrate contact times of impacting water droplets; however, surface designs with similar performance for significantly more viscous liquids are missing, despite their importance in nature… Click to show full abstract

Macrotextured superhydrophobic surfaces can reduce droplet-substrate contact times of impacting water droplets; however, surface designs with similar performance for significantly more viscous liquids are missing, despite their importance in nature and technology such as for chemical shielding, food-staining repellency, and supercooled (viscous) water droplet removal in anti-icing applications. Here, we introduce a deterministic, controllable, and upscalable method to fabricate superhydrophobic surfaces with a 3D-printed architecture, combining arrays of alternating surface protrusions and indentations. We show a more than threefold contact time reduction of impacting viscous droplets up to a fluid viscosity of 3.7 mPa·s, which equals 3.7 times the viscosity of water at room temperature, covering the viscosity of many chemicals and supercooled water. On the basis of the combined consideration of the fluid flow within and the simultaneous droplet dynamics above the texture, we recommend future pathways to rationally architecture such surfaces, all realizable with the methodology presented here.

Keywords: repellency; droplet; water; architecture; printed surface

Journal Title: ACS applied materials & interfaces
Year Published: 2018

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.