LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Multifunctional Nanobiohybrid Material Composed of Ag@Bi2Se3/RNA Three-Way Junction/miRNA/Retinoic Acid for Neuroblastoma Differentiation.

Photo from wikipedia

Nanoparticle-based cell differentiation therapy has attracted increasing research interest as it is a promising substitute for conventional cancer treatment methods. Here, the topological insulator bismuth selenide nanoparticle (Bi2Se3 NP) was… Click to show full abstract

Nanoparticle-based cell differentiation therapy has attracted increasing research interest as it is a promising substitute for conventional cancer treatment methods. Here, the topological insulator bismuth selenide nanoparticle (Bi2Se3 NP) was core-shelled with silver (Ag@Bi2Se3) to represent remarkable biocompatibility and plasmonic features (ca. 2.3 times higher than those of Ag nanoparticle). Moreover, a newly developed RNA three-way junction (3WJ) structure was designed for the quad-functionalization of any type of nanoparticle and surface. One leg of the 3WJ was attached to the Ag@Bi2Se3, and the other leg harbored a cell-penetrating RNA and a florescence tag. The third leg was designed to inhibit micro-RNA-17 (miR-17) and to further release retinoic acid (RA). A new drug delivery mechanism was developed for the slow release of RA inside the cytosol based on the prerequisite inhibition of miR-17 using a strand displacement strategy. In this paper, we report a simple methodology for resolving the hydrophobicity challenges of RA by its conjugation with a RNA strand (RA/R) through a stimulus-responsive cross-linker. The developed nanobiohybrid material could fully differentiate SH-SY5Y cancer cells into neurons and stop their growth in 6 days without requiring sequential treatments which has not been reported yet. Using a surface-enhanced Raman spectroscopy technique, the RA delivery and the cell differentiation process were monitored nondestructively in real time. The fabricated nanobiohybrid material could open the new horizons in the fabrication of different diagnostic/therapeutic agents.

Keywords: bi2se3; three way; rna three; nanobiohybrid material; differentiation

Journal Title: ACS applied materials & interfaces
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.