Conductive carbon films with good flexibility are ever-increasingly desired for electronics. Previous efforts relying on graphene films to achieve this required special treatment to create wrinkles in the lamellar stacking… Click to show full abstract
Conductive carbon films with good flexibility are ever-increasingly desired for electronics. Previous efforts relying on graphene films to achieve this required special treatment to create wrinkles in the lamellar stacking sheet structure. Here, films with a wrinkled structure were facilely fabricated from electrochemically derived 3-dimiensional (3D) graphene/graphite aggregates, exhibiting excellent flexibility and high conductivity. The resulting films are very flexible that can bear 1000 times fold without breakage. A high conductivity up to 100 000 S m-1 can be achieved after a relatively low temperature annealing (1000 °C) owing to its low content of defect and large size of graphene/graphite aggregates. Based on these properties, an electrothermal heater assembled from these composite films supplies a high saturated temperature (423 °C) at low working voltages (4 V). These superior properties, together with the advantage of environmental friendliness and facile and large-scale fabrication, endow the composite films with great potential applications in flexible electronics.
               
Click one of the above tabs to view related content.