LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Scalable Manufacturing of Single Nanowire Devices Using Crack-Defined Shadow Mask Lithography

Photo by steinart from unsplash

Single nanowires (NWs) have a broad range of applications in nanoelectronics, nanomechanics, and nanophotonics, but, to date, no technique can produce single sub-20 nm wide NWs with electrical connections in… Click to show full abstract

Single nanowires (NWs) have a broad range of applications in nanoelectronics, nanomechanics, and nanophotonics, but, to date, no technique can produce single sub-20 nm wide NWs with electrical connections in a scalable fashion. In this work, we combine conventional optical and crack lithographies to generate single NW devices with controllable and predictable dimensions and placement and with individual electrical contacts to the NWs. We demonstrate NWs made of gold, platinum, palladium, tungsten, tin, and metal oxides. We have used conventional i-line stepper lithography with a nominal resolution of 365 nm to define crack lithography structures in a shadow mask for large-scale manufacturing of sub-20 nm wide NWs, which is a 20-fold improvement over the resolution that is possible with the utilized stepper lithography. Overall, the proposed method represents an effective approach to generate single NW devices with useful applications in electrochemistry, photonics, and gas- and biosensing.

Keywords: single nanowire; shadow mask; scalable manufacturing; lithography; manufacturing single; crack

Journal Title: ACS Applied Materials & Interfaces
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.