LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Less is More: Improved Thermal Stability and Plasmonic Response in Au Films via the Use of SubNanometer Ti Adhesion Layers.

Photo by ktsfish from unsplash

The use of a metallic adhesion layer is known to increase the thermo-mechanical stability of Au thin films against solid-state dewetting, but in turn results in damping of the plasmonic… Click to show full abstract

The use of a metallic adhesion layer is known to increase the thermo-mechanical stability of Au thin films against solid-state dewetting, but in turn results in damping of the plasmonic response, reducing their utility in applications such as heat-assisted magnetic recording (HAMR). In this work, 50 nm Au films with Ti adhesion layers ranging in thickness from 0 to 5 nm were fabricated, and their thermal stability, electrical resistivity, and plasmonic response were measured. Subnanometer adhesion layers are demonstrated to significantly increase the stability of the thin films against dewetting at elevated temperatures (>200 °C), compared to more commonly used adhesion layer thicknesses that are in the range of 2-5 nm. For adhesion layers thicker than 1 nm, the diffusion of excess Ti through Au grain boundaries and subsequent oxidation was determined to result in degradation of the film. This mechanism was confirmed using transmission electron microscopy and X-ray photoelectron spectroscopy on annealed 0.5 and 5 nm adhesion layer samples. The superiority of subnanometer adhesion layers was further demonstrated through measurements of the surface-plasmon polariton resonance; those with thinner adhesion layers possessed both a stronger and spectrally sharper resonance. These results have relevance beyond HAMR to all Ti/Au systems operating at elevated temperatures.

Keywords: adhesion layers; adhesion; plasmonic response; stability; subnanometer adhesion

Journal Title: ACS applied materials & interfaces
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.