LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Controllable Shape Changing and Tristability of Bilayer Composite.

Photo from wikipedia

The programmable shape transition of a two-dimensional sheet to a three-dimensional (3D) structure in response to a variety of external stimuli has recently attracted increasing attention. Among the various shape… Click to show full abstract

The programmable shape transition of a two-dimensional sheet to a three-dimensional (3D) structure in response to a variety of external stimuli has recently attracted increasing attention. Among the various shape changing materials, shape memory polymers (SMPs) can fix their temporary shape and/or their length and recover under proper thermal treatment. In this work, we create a bilayer composite by bonding one layer of elastomer with one layer of stretched SMPs, which can undergo a series of shape transitions via the storage and release of internal stresses. The programed shapes are achieved by adjusting the orientation and elongation of the SMPs. Meanwhile, the 3D structures exhibit tristability and can transit between hemihelical, left-handed helical, and right-handed helical shapes. Both theoretical analysis and finite element simulations were conducted to understand the mechanism of shape transformation and used to predict the deformed configuration by adjusting preprogramming parameters. Our work provides a new strategy and design space for fabricating smart reconfigurable structures and paves way for the design and development of bioinspired four-dimensional active matter for a broad range of applications in intelligent materials.

Keywords: controllable shape; shape; changing tristability; bilayer composite; shape changing

Journal Title: ACS applied materials & interfaces
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.