LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Gate-Tunable Photodetection/Voltaic Device Based on BP/MoTe2 Heterostructure.

van der Waals heterostructures based on two-dimensional (2D) materials have attracted tremendous attention for their potential applications in optoelectronic devices, such as solar cells and photodetectors. In addition, the widely… Click to show full abstract

van der Waals heterostructures based on two-dimensional (2D) materials have attracted tremendous attention for their potential applications in optoelectronic devices, such as solar cells and photodetectors. In addition, the widely tunable Fermi levels of these atomically thin 2D materials enable tuning the device performances/functions dynamically. Herein, we demonstrated a MoTe2/BP heterostructure, which can be dynamically tuned to be either p-n or p-p junction by gate modulation due to compatible band structures and electrically tunable Fermi levels of MoTe2 and BP. Consequently, the electrostatic gating can further accurately control the photoresponse of this heterostructure in terms of the polarity and the value of photoresponsivity. Besides, the heterostructure showed outstanding photodetection/voltaic performances. The optimum photoresponsivity, external quantum efficiency, and response time as a photodetector were 0.2 A/W, 48.1%, and 2 ms, respectively. Our study enhances the understanding of 2D heterostructures for designing gate-tunable devices and reveals promising potentials of these devices in future optoelectronic applications.

Keywords: mote2 heterostructure; photodetection voltaic; heterostructure; gate tunable; device

Journal Title: ACS applied materials & interfaces
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.