LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Infrared Invisibility Cloak Based on Polyurethane-Tin Oxide Composite Microtubes.

Photo from wikipedia

An invisibility cloak based on visible rays with a refractive index similar to that of air can effectively conceal people or objects from human eyes. However, even if an invisibility… Click to show full abstract

An invisibility cloak based on visible rays with a refractive index similar to that of air can effectively conceal people or objects from human eyes. However, even if an invisibility cloak based on visible rays is used, an infrared (IR) thermography camera can detect the heat (thermal radiation) emitted from different types of objects including living things. Therefore, both visible and IR rays should be shielded using an invisibility cloak produced by an appropriate technology. Herein, we developed a textile cloak that can almost completely conceal people or objects from IR vision. If a person or object is covered with an IR- and thermal-radiation-shielding textile woven with polyurethane (PU)-tin oxide (SnO2) composite microtubes, serving as an IR invisibility cloak, IR and thermal radiation emitted from the person or object can be simultaneously blocked. Furthermore, the IR- and thermal-radiation-shielding characteristics could be improved further by filling the core of the PU-SnO2 composite microtubes with heat-absorbing materials such as water and paraffin oil in place of air. In addition, the external surface of the IR- and thermal-radiation-shielding textile serving as an IR-reflecting cloak can be waterproofed to enable certain IR- and thermal-radiation-shielding functions under various environmental conditions.

Keywords: invisibility cloak; cloak based; thermal radiation; cloak

Journal Title: ACS applied materials & interfaces
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.