LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Conductive MOF-Modified Separator for Mitigating the Shuttle Effect of Lithium-Sulfur Battery through a Filtration Method.

Photo by _louisreed from unsplash

Although there are plenty of merits for lithium-sulfur (Li-S) batteries, their undesired shuttle effect and insulated nature are hindering the practical applications. Here, a conductive metal-organic framework (MOF)-modified separator has… Click to show full abstract

Although there are plenty of merits for lithium-sulfur (Li-S) batteries, their undesired shuttle effect and insulated nature are hindering the practical applications. Here, a conductive metal-organic framework (MOF)-modified separator has been designed and fabricated through a facile filtration method to address the issues. Specifically, its intrinsic microporous structure, hydrophilic polar property, and conductive feature could make it easy to contact with and trap polysulfides and boost the kinetics of electrochemical reactions. Both the physical and chemical properties of the as-prepared separator are beneficial to alleviating the shuttle effect and enhancing the rate capability. Accordingly, the electrochemical performance of the battery with a MOF-modified separator was significantly improved.

Keywords: shuttle effect; mof modified; modified separator; lithium sulfur

Journal Title: ACS applied materials & interfaces
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.