LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Graphene Decorated with Silver Nanoparticles as a Low-Temperature Methane Gas Sensor.

Photo from wikipedia

This paper is devoted to an investigation on the methane sensing properties of graphene (G), decorated with silver nanoparticles (AgNPs), under ambient conditions. To do so, we first present an… Click to show full abstract

This paper is devoted to an investigation on the methane sensing properties of graphene (G), decorated with silver nanoparticles (AgNPs), under ambient conditions. To do so, we first present an effective modification in the standard manner of decorating graphene by AgNPs. From structural analysis of the product (AgNPs/G), it is concluded that graphene is indeed decorated by AgNPs of a mean size 29.3 nm, free of aggregation, with a uniform distribution. The so-produced material is then used, as a resistivity-based sensor, to examine its response to the presence of methane gas. Our measurements are performed at relatively low temperatures, for various silver-to-graphene mass ratios (SGMRs) and methane concentrations. To account for the effects of humidity, we have made the measurements, at room temperature, for different levels of humidity. Our results demonstrate that an increase in the SGMR enhances the response of AgNPs/G to methane with an optimum value of SGMR ≅ 12%. It is also illustrated that for methane concentrations less than 2000 ppm, the maximal response increases linearly and rapidly, even at room temperature. Moreover, we demonstrate that AgNPs/G is of low limit of detection, highly stable, selective, reversible, repeatable, and sensor-to-sensor reproducible, for methane sensing. The results thus promise a low-cost and simple-to-fabricate methane sensing device.

Keywords: silver nanoparticles; decorated silver; temperature; graphene decorated; methane; sensor

Journal Title: ACS applied materials & interfaces
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.