LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Bipolar Blue Host Emitter with Unity Quantum Yield Allows Full Exciton Radiation in Single-Emissive-Layer Hybrid White Organic Light-Emitting Diodes.

Photo from wikipedia

Phosphorescence/fluorescence hybrid white organic light-emitting diodes (OLEDs) are highly appealing for solid-state lighting. One major challenge is how to fully utilize the electrically generated excitons for light output. Herein, an… Click to show full abstract

Phosphorescence/fluorescence hybrid white organic light-emitting diodes (OLEDs) are highly appealing for solid-state lighting. One major challenge is how to fully utilize the electrically generated excitons for light output. Herein, an efficient strategy to realize full exciton radiation is successfully revealed by a judicious molecular design and suitable device engineering. A blue host emitter TP-PPI is designed and synthesized, exhibiting a near 100% photoluminescence quantum yield and a high triplet energy level, enabling high-performance blue fluorescence and sensitization of a yellow phosphorescent dopant. Full exciton radiation in hybrid white OLEDs is demonstrated with a single emitting layer formed by doping a yellow phosphor (PO-01) into TP-PPI. Near 100% exciton utilization and state-of-the-art external quantum efficiency of 27.5% are achieved with the high-efficiency blue-emitting host and an electron-trap engineered device architecture.

Keywords: exciton; hybrid white; full exciton; host; exciton radiation

Journal Title: ACS applied materials & interfaces
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.