LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Facile Strategy for Visible Disassembly of Spherical Nucleic Acids Programmed by Catalytic DNA Circuits.

Photo from wikipedia

The programmable toehold-mediated DNA-strand-displacement reaction has demonstrated its extraordinary capability in driving the spherical nucleic acid assembly. Here, a facile strategy of integrating a DNA-strand-displacement-based DNA circuit with a universal… Click to show full abstract

The programmable toehold-mediated DNA-strand-displacement reaction has demonstrated its extraordinary capability in driving the spherical nucleic acid assembly. Here, a facile strategy of integrating a DNA-strand-displacement-based DNA circuit with a universal spherical nucleic acid aggregate system was developed for the visible disassembly of spherical nucleic acids. This integrated system exhibited rapid colorimetric response and good sensitivity in the disassembly reaction and demonstrated its capability in the application of single nucleotide polymorphism discrimination. Moreover, an OR logic gate used for multiplex detection was constructed through combining the fixed spherical nucleic acid disassembly system with two DNA circuits. This strategy will have great potential in the fabrication of a portable low-cost DNA diagnostic kit, and it is also a very promising method to be used in other applications, such as complex DNA networks and programmable phase transformation of nanoparticle superlattices.

Keywords: spherical nucleic; dna; disassembly spherical; visible disassembly; facile strategy

Journal Title: ACS applied materials & interfaces
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.