LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Excitation Wavelength-Dependent Dual-Mode Luminescence Emission for Dynamic Multicolor Anticounterfeiting.

Photo from wikipedia

Luminescent materials have become prevalent in data communication and information security because of their special optical characteristics. Conventional luminescent materials generally exhibit unicolor emission and fixed excitation mode, resulting in… Click to show full abstract

Luminescent materials have become prevalent in data communication and information security because of their special optical characteristics. Conventional luminescent materials generally exhibit unicolor emission and fixed excitation mode, resulting in decreased efficiency of anticounterfeiting applications. The development of an iridescent chameleon-like material that can change its emission color under different stimulations is a significant challenge. Here, we propose that Pb2+, Mn2+, and lanthanide cations (such as Y3+, Tb3+, Yb3+) co-doped in Na2CaGe2O6 particles can be an effective tool for designing dual-mode anticounterfeiting materials based on their tunable fluorescence/persistent luminescence transformation and excitation wavelength-dependent emission. Ultimately, a proof-of-concept anticounterfeiting fabric is obtained by using the as-prepared phosphors and exhibits a dynamic multiple color response. This work exploits the possibility of developing a new class of multimode anticounterfeit materials, which would be almost impossible to mimic or counterfeit, providing a very high level of security.

Keywords: dual mode; wavelength dependent; excitation; excitation wavelength; emission

Journal Title: ACS applied materials & interfaces
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.