LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Design of Self-Healing and Electrically Conductive Silk Fibroin-Based Hydrogels.

Photo by amandavickcreative from unsplash

Self-healing and electrically conductive silk fibroin (SF)-based hydrogels were developed based on the dynamic assembly/disassembly nature of supramolecular complexes and the conductive nature of polypyrrole (PPy). The self-healing properties of… Click to show full abstract

Self-healing and electrically conductive silk fibroin (SF)-based hydrogels were developed based on the dynamic assembly/disassembly nature of supramolecular complexes and the conductive nature of polypyrrole (PPy). The self-healing properties of the hydrogels were achieved through host-guest interactions between β-cyclodextrin and amino acid side chains (tyrosine, tryptophan, phenylalanine, and histidine) on SF. PPy deposition was achieved via in situ polymerization of pyrrole using ammonium persulfate as an oxidant and laccase as a catalyst. The PPy-coated hydrogels behaved as an elastomer and displayed excellent electrical properties, with adjustable electrical conductivities ranging from 0.8 ± 0.2 to (1.0 ± 0.3) × 10-3 S·cm-1. Furthermore, possibility of potential utilization of the hydrogels in electrochemistry applications as flexible yet self-healable electrode materials was explored. This study not only shows great potential in expanding the role of silk-based devices for various applications but also provides a useful approach for designing multifunctional self-healing protein-based hydrogels.

Keywords: based hydrogels; healing electrically; conductive silk; electrically conductive; self healing

Journal Title: ACS applied materials & interfaces
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.