LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

How Does a Plasmon-Induced Hot Charge Carrier Break a C-C Bond?

Photo from wikipedia

Hot-electron chemistry at gold nanoparticle (AuNP) surfaces has received much attention recently because its understanding provides a basis for plasmonic photocatalysis and photovoltaics. Nonradiative decay of excited surface plasmons produces… Click to show full abstract

Hot-electron chemistry at gold nanoparticle (AuNP) surfaces has received much attention recently because its understanding provides a basis for plasmonic photocatalysis and photovoltaics. Nonradiative decay of excited surface plasmons produces energetic hot charge carriers that transfer to adsorbate molecules and induce chemical reactions. Such plasmon-driven reactions, however, have been limited to a few systems, notably the dimerization of 4-aminobenzenethiol to 4,4'-dimercaptoazobenzene. In this work, we explore a new class of plasmon-driven reactions associated with a unimolecular bond-cleavage process. We unveil the mechanism of the decarboxylation reaction of 4-mercaptobenzoic acid and extend the mechanism to account for the β-cleavage reaction of 4-mercaptobenzyl alcohol. Combining the construction of well-controlled nanogap systems and sensitive Raman spectroscopy with methodical changes of experimental conditions (laser wavelengths, interface materials, pH, ambient gases, etc.), we track the hot charge carriers from the formation to the transfer to reactants, which provides insights into how plasmon excitation eventually leads to the C-C bond cleavage of the molecules in the nanogap.

Keywords: bond; charge; induced hot; hot charge; charge carrier; plasmon induced

Journal Title: ACS applied materials & interfaces
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.